Edit Page

Use JSONata

JSONata is a query language to filter, transform, and create JSON objects. Rhize BPMN workflows use JSONata expressions to transform JSON payloads as they pass through workflow nodes and across integrated systems. In BPMN workflows, JSONata expressions have some essential functions:

  • Map data. Moving values from one data structure to another.
  • Calculate data. Receiving values as input and create new data from them.
  • Create logical conditions. Generate values to feed to gateways to direct the flow of the BPMN.

This guide details how to use JSONata in your Rhize environment and provides some examples relevant to manufacturing workflows. For the full details of the JSONata expression language, read the Official JSONata documentation.

Use JSONata in Rhize

JSONata returns the final value of its expression as output. This output can be of any data type that JSON supports. Generally, we recommend outputting a JSON object with the keys and values of the data you want to subsequently work with.

In practice, creating an expression usually follows these steps:

  1. Begin with an =.
  2. Embed the expression in parenthesis.
  3. At the top of expression, write your logic, variables, and functions.
  4. At the bottom of the expression, create a JSON object whose keys are names you configure and whose values are derived from your logic.

For example:

=(
  $logic := "Hello" & " " & "World";

  {
    "output": $logic
  }
)
{
  "output": "Hello World"
}

Begin each expression with a =

Note that the previous expression begins with the equals sign, =. This character instructs Rhize to parse the subsequent data as JSONata (as opposed to raw JSON or some other data structure).

Access root variable context with $.

To access the root of the entire BPMN variable space, use the dollar character followed by a dot, $.. For example, this expression accesses all IDs for an equipmentClass object from the root variable context, $..

Expression: $.equipmentClass.id

Expression: $.equipmentClass.id

Input:

{
  "equipmentClass": [
    {
      "id": "Vessel-A012",
      "description": "Stock Solution Vessel",
      "effectiveStart": "2023-05-24T09:58:00Z",
      "equipmentClassProperties": [
        {
          "id": "Volume",
          "description": "Vessel Volume"
        }
      ]
    },
    {
        "id": "Vessel-A013",
        "description": "Stock Solution Vessel"
    }
  ]
}

Output:

[
  "Vessel-A012",
  "Vessel-A013"
]

JSONata in BPMN elements

JSONata can be used in many Rhize BPMN elements Particularly, the JSONata service task exists to receive input and pass it to another element or system.

Though JSONata tasks are the most common use of JSONata, you can use the = prefix to declare an expression in many other fields. Parameters that accept expressions include API payloads, message payloads, and flow conditions.

To review the full list of elements and fields that accept JSONata, read the BPMN element reference.

JSONata version

Many implementations of JSONata exist. Rhize uses a custom Go implementation for high performance and safe calculation.

JSONata examples

These snippets provide some examples of JSONata from manufacturing workflows. To experiment with how they work, copy the data and expression into a JSONata exerciser and try changing values.

Filter for items that contain

This expression returns the ID of all equipmentActual items that are associated with a specified job response JR-4. It outputs the IDs as an array of strings in a new custom object.

This is a minimal example of how you can use JSONata to transform data into new representations. Such transformation is a common prerequisite step for post-processing and service interoperability.

$.data.queryJobResponse[`id`="JR-4"].(
    {"associatedEquipment": equipmentActual.id}
)
{
  "data": {
    "queryJobResponse": [
      {
        "id": "JR-1",
        "data": [
          {
            "value": 100
          }
        ],
        "equipmentActual": [
          {
            "id": "hauler"
          },
          {
            "id": "actuator-121"
          }
        ]
      },
      {
        "id": "JR-4",
        "data": [
          {
            "value": "101.8"
          }
        ],
        "equipmentActual": [
          {
            "id": "actuator-132"
          },
          {
            "id": "actuator-133"
          }
        ]
      }
    ]
  }
}
{
  "associatedEquipment": [
    "actuator-132",
    "actuator-133"
  ]
}

Find actual associated with high values

This expression finds all job responses whose value exceeds 100. It outputs the matching job response IDs along with the associated equipment actual used in the job.

In production, you may use a similar analysis to isolate all resource actuals associated with an abnormal production outcome.

$map($.data.queryJobResponse, function($v){
    $number($v.data.value) > 102
        ?  {"jobResponseId": $v.id, "EquipmentActual": $v.equipmentActual}
        }
    )
{
  "data": {
    "queryJobResponse": [
      {
        "id": "JR-1",
        "data": [
          {
            "value": 100
          }
        ],
        "equipmentActual": [
          {
            "id": "hauler"
          },
          {
            "id": "actuator-121"
          }
        ]
      },
      {
        "id": "JR-5",
        "data": [
          {
            "value": 103.2
          }
        ],
        "equipmentActual": [
          {
            "id": "actuator-122"
          },
          {
            "id": "actuator-13"
          }
        ]
      },
      {
        "id": "JR-2",
        "data": [],
        "equipmentActual": [
          {
            "id": "actuator-13"
          }
        ]
      },
      {
        "id": "JR-4",
        "data": [
          {
            "value": "101.8"
          }
        ],
        "equipmentActual": [
          {
            "id": "actuator-132"
          },
          {
            "id": "actuator-133"
          }
        ]
      },
      {
        "id": "JR-3",
        "data": [],
        "equipmentActual": [
          {
            "id": "actuator-091"
          }
        ]
      },
      {
        "id": "JR-12",
        "data": [],
        "equipmentActual": []
      },
      {
        "id": "JR-123",
        "data": [],
        "equipmentActual": [
          {
            "id": "actuator-121"
          }
        ]
      },
      {
        "id": "JR-6",
        "data": [],
        "equipmentActual": []
      },
      {
        "id": "JR-8",
        "data": [
          {
            "value": "96.7"
          }
        ],
        "equipmentActual": [
          {
            "id": "actuator-091"
          }
        ]
      },
      {
        "id": "JR-9",
        "data": [],
        "equipmentActual": []
      },
      {
        "id": "JR-10",
        "data": [
          {
            "value": "105.0"
          }
        ],
        "equipmentActual": [
          {
            "id": "actuator-12"
          }
        ]
      },
      {
        "id": "JR-7",
        "data": [
          {
            "value": "103.2"
          }
        ],
        "equipmentActual": [
          {
            "id": "actuator-12"
          }
        ]
      }
    ]
  }
}
[
  {
    "jobResponseId": "JR-5",
    "EquipmentActual": [
      {
        "id": "actuator-122"
      },
      {
        "id": "actuator-13"
      }
    ]
  },
  {
    "jobResponseId": "JR-10",
    "EquipmentActual": [
      {
        "id": "actuator-12"
      }
    ]
  },
  {
    "jobResponseId": "JR-7",
    "EquipmentActual": [
      {
        "id": "actuator-12"
      }
    ]
  }
]

Map event to operations event

This function takes data from an external weather API and maps it onto the operationsEvent ISA-95 object. It takes the earliest value from the event time data as the start, and last value as the end. If no event data exists, it outputs a message.

Although this example uses data that is unlikely to be a source of a real manufacturing event, the practice of receiving data from a remote API and mapping it to ISA-95 representation is quite common. In production, you may perform a similar operation to map an SAP schedule order to an operationsSchedule, or the results from a QA service to the testResults object.

(

$count(events[0]) > 0

    ? events.{
    "id":id,
    "description":title,
    "hierarchyScope":{
        "id":"Earth",
        "label": Earth,
        "effectiveStart": $sort(geometry.date)[0]
        },
    "category":categories.title,
    "recordTimestamp": $sort(geometry.date)[0],
    "effectiveStart": $sort(geometry.date)[0],
    "effectiveEnd": $sort(geometry.date)[$count(geometries.date)-1],
    "source": sources.id & " " & sources.url,
    "operationsEventDefinition": {
        "id": "Earth event",
        "label": "Earth event"
        }
    }

    : {"message":"No earth events lately"}

)
{
	"title": "EONET Events",
	"description": "Natural events from EONET.",
	"link": "https://eonet.gsfc.nasa.gov/api/v3/events",
	"events": [
		{
			"id": "EONET_6516",
			"title": "Ubinas Volcano, Peru",
            "description": null,
			"link": "https://eonet.gsfc.nasa.gov/api/v3/events/EONET_6516",
			"closed": null,
				"categories": [
					{
					"id": "volcanoes",
					"title": "Volcanoes"
				}

	    				],
    			"sources": [
					{
					"id": "SIVolcano",
					"url": "https://volcano.si.edu/volcano.cfm?vn=354020"
				}


			],
					"geometry": [
					{
							"magnitudeValue": null,
					"magnitudeUnit": null,
					"date": "2024-05-06T00:00:00Z",
					"type": "Point",
							"coordinates": [ -70.8972, -16.345 ]
							}


			]
		},

			{
			"id": "EONET_6513",
			"title": "Iceberg D28A",
            "description": null,
			"link": "https://eonet.gsfc.nasa.gov/api/v3/events/EONET_6513",
			"closed": null,
				"categories": [
					{
					"id": "seaLakeIce",
					"title": "Sea and Lake Ice"
				}

	    				],
    			"sources": [
					{
					"id": "NATICE",
					"url": "https://usicecenter.gov/pub/Iceberg_Tabular.csv"
				}


			],
					"geometry": [
					{
							"magnitudeValue": 208.00,
					"magnitudeUnit": "NM^2",
					"date": "2024-02-16T00:00:00Z",
					"type": "Point",
							"coordinates": [ -33.27, -51.88 ]
							},

							{
							"magnitudeValue": 208.00,
					"magnitudeUnit": "NM^2",
					"date": "2024-03-01T00:00:00Z",
					"type": "Point",
							"coordinates": [ -32.82, -51.09 ]
							},

							{
							"magnitudeValue": 208.00,
					"magnitudeUnit": "NM^2",
					"date": "2024-03-07T00:00:00Z",
					"type": "Point",
							"coordinates": [ -30.95, -51.21 ]
							}
          ]
		},

			{
			"id": "EONET_6515",
			"title": "Sheveluch Volcano, Russia",
            "description": null,
			"link": "https://eonet.gsfc.nasa.gov/api/v3/events/EONET_6515",
			"closed": null,
				"categories": [
					{
					"id": "volcanoes",
					"title": "Volcanoes"
				}

	    				],
    			"sources": [
					{
					"id": "SIVolcano",
					"url": "https://volcano.si.edu/volcano.cfm?vn=300270"
				}


			],
					"geometry": [
					{
							"magnitudeValue": null,
					"magnitudeUnit": null,
					"date": "2024-04-28T00:00:00Z",
					"type": "Point",
							"coordinates": [ 161.36, 56.653 ]
							}


			]
		}

		]
}
[
  {
    "id": "EONET_6516",
    "description": "Ubinas Volcano, Peru",
    "hierarchyScope": {
      "id": "Earth",
      "effectiveStart": "2024-05-06T00:00:00Z"
    },
    "category": "Volcanoes",
    "recordTimestamp": "2024-05-06T00:00:00Z",
    "effectiveStart": "2024-05-06T00:00:00Z",
    "effectiveEnd": "2024-05-06T00:00:00Z",
    "source": "SIVolcano https://volcano.si.edu/volcano.cfm?vn=354020",
    "operationsEventDefinition": {
      "id": "Earth event",
      "label": "Earth event"
    }
  },
  {
    "id": "EONET_6513",
    "description": "Iceberg D28A",
    "hierarchyScope": {
      "id": "Earth",
      "effectiveStart": "2024-02-16T00:00:00Z"
    },
    "category": "Sea and Lake Ice",
    "recordTimestamp": "2024-02-16T00:00:00Z",
    "effectiveStart": "2024-02-16T00:00:00Z",
    "effectiveEnd": "2024-03-07T00:00:00Z",
    "source": "NATICE https://usicecenter.gov/pub/Iceberg_Tabular.csv",
    "operationsEventDefinition": {
      "id": "Earth event",
      "label": "Earth event"
    }
  },
  {
    "id": "EONET_6515",
    "description": "Sheveluch Volcano, Russia",
    "hierarchyScope": {
      "id": "Earth",
      "effectiveStart": "2024-04-28T00:00:00Z"
    },
    "category": "Volcanoes",
    "recordTimestamp": "2024-04-28T00:00:00Z",
    "effectiveStart": "2024-04-28T00:00:00Z",
    "effectiveEnd": "2024-04-28T00:00:00Z",
    "source": "SIVolcano https://volcano.si.edu/volcano.cfm?vn=300270",
    "operationsEventDefinition": {
      "id": "Earth event",
      "label": "Earth event"
    }
  }
]

Calculate summary statistics

These functions calculate statistics for an array of numbers. Some of the output uses built-in JSONata functions, such as $max(). Others, such as the ones for median and standard deviation, are created in the expression.

You might use statistics such as these to calculate metrics on historical or streamed data.

(
  $mode := function($arr) {
    (
      $uniq := $distinct($arr);
      $counted := $map($uniq, function($v){
        { "value": $v, "count": $count($filter($arr, function($item) { $item = $v })) }
        });
      $modes := $filter($counted, function($item) {
        $item.count = $max($counted.count)
        });
      $sort($modes.value)
    )
  };
  $stdPop := function($arr) {
    (
      $variance := $map($arr, function($v, $i, $a) { $power($v - $average($a), 2) });
      $sum($variance) / $count($arr) ~> $sqrt()
    )
  };
  $median := function($arr) {
    (
      $sorted := $sort($arr);
      $length := $count($arr);
      $mid := $floor($length / 2);
      $length % 2 = 0 ? $median := ($sorted[$mid - 1] + $sorted[$mid]) / 2 : $median := $sorted[$mid]
    )
  };
  {
    "std_population": $stdPop($.data.arr),
    "mean": $average($.data.arr),
    "median": $median($.data.arr),
    "mode": $mode($.data.arr),
    "max": $max($.data.arr),
    "min": $min($.data.arr)
  }
)
{
  "data": {
    "arr": [
      1,
      1,
      6,
      2,
      3,
      32,
      4,
      5,
      5,
      3,
      3,
      6,
      6
    ]
  }
}
{
  "std_population": 7.72071677084591,
  "mean": 5.923076923076923,
  "median": 4,
  "mode": [
    3,
    6
  ],
  "max": 32,
  "min": 1
}

Select random item

This expression randomly selects an item from the plant’s array of available equipment, and then adds that item as the equipmentRequirement for a segment associated with a specific job order.

You might use randomizing functions for scheduling, quality control, and simulation.

(

$randomChoice := function($a) {
    (
        $selection :=
            $random() * ($count($a)+1) ~> $floor();
        $a[$selection]

    )};

{
"segmentRequirement": {
  "workRequirement": {"id": $.PO},
  "equipmentRequirements":[$randomChoice($.available)],
  "id": "Make widget"
  }
}

)
{
  "available":["line_1","line_2","line_3","line_4","line_5"],
  "PO":"po-123"
  }
{
  "segmentRequirement": {
    "workRequirement": {
      "id": "po-123"
    },
    "equipmentRequirements": [
      "line_2"
    ],
    "id": "Make widget"
  }
}

Recursively find child IDs

This function uses recursion and a predefined set of naming rules to find (or generate) a set of child IDs for an entity. The n value determines how many times it’s called.

Many payloads in manufacturing have nested data. Recursive functions such as the following provide a concise means of traversing a set of subproperties.

(
    $next := function($x, $y) {$x > 1 ?
        (
            $namingRules := "123456789ABCDFGHJKLMNOPQRSTUVWXYZ";
            $substring($y[-1],-1) = "Z" ?
            $next($x - 1, $append($y, $y[-1] & '1')) :
            $next($x - 1, $append(
                $y,
                $substring($y[-1],0,$length($y[-1])-1) & $substring($substringAfter($namingRules,$substring($y[-1],-1)),0,1)
            ))
        )
        : $y};
    {
        "children": $next(n, [nextId])
    }
)
{
"n":10,
"nextId": "molten-widet-X2FCS"
}
{
  "children": [
    "molten-widet-X2FCS",
    "molten-widet-X2FCT",
    "molten-widet-X2FCU",
    "molten-widet-X2FCV",
    "molten-widet-X2FCW",
    "molten-widet-X2FCX",
    "molten-widet-X2FCY",
    "molten-widet-X2FCZ",
    "molten-widet-X2FCZ1",
    "molten-widet-X2FCZ2"
  ]
}